Source code for dgllife.data.astrazeneca_chembl_solubility

# -*- coding: utf-8 -*-
#
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Experimental solubility determined at AstraZeneca on a
# set of compounds, recorded in ChEMBL

import pandas as pd

from dgl.data.utils import get_download_dir, download, _get_dgl_url

from .csv_dataset import MoleculeCSVDataset
from ..utils.mol_to_graph import smiles_to_bigraph

__all__ = ['AstraZenecaChEMBLSolubility']

[docs]class AstraZenecaChEMBLSolubility(MoleculeCSVDataset): r"""Experimental solubility determined at AstraZeneca, extracted from ChEMBL The dataset provides experimental solubility (in nM unit) for 1763 molecules in pH7.4 using solid starting material using the method described in [1]. References: * [1] A Highly Automated Assay for Determining the Aqueous Equilibrium Solubility of Drug Discovery Compounds * [2] `CHEMBL3301361 <https://www.ebi.ac.uk/chembl/document_report_card/CHEMBL3301361/>`__ Parameters ---------- smiles_to_graph: callable, str -> DGLGraph A function turning a SMILES string into a DGLGraph. Default to :func:`dgllife.utils.smiles_to_bigraph`. node_featurizer : callable, rdkit.Chem.rdchem.Mol -> dict Featurization for nodes like atoms in a molecule, which can be used to update ndata for a DGLGraph. Default to None. edge_featurizer : callable, rdkit.Chem.rdchem.Mol -> dict Featurization for edges like bonds in a molecule, which can be used to update edata for a DGLGraph. Default to None. load : bool Whether to load the previously pre-processed dataset or pre-process from scratch. ``load`` should be False when we want to try different graph construction and featurization methods and need to preprocess from scratch. Default to False. log_every : bool Print a message every time ``log_every`` molecules are processed. Default to 1000. cache_file_path : str Path to the cached DGLGraphs. Default to 'AstraZeneca_chembl_solubility_graph.bin'. log_of_values : bool Whether to take the logarithm of the solubility values. Before taking the logarithm, the values can have a range of [100, 1513600]. After taking the logarithm, the values will have a range of [4.61, 14.23]. Default to True. n_jobs : int The maximum number of concurrently running jobs for graph construction and featurization, using joblib backend. Default to 1. Examples -------- >>> from dgllife.data import AstraZenecaChEMBLSolubility >>> from dgllife.utils import smiles_to_bigraph, CanonicalAtomFeaturizer >>> dataset = AstraZenecaChEMBLSolubility(smiles_to_bigraph, CanonicalAtomFeaturizer()) >>> # Get size of the dataset >>> len(dataset) 1763 >>> # Get the 0th datapoint, consisting of SMILES, DGLGraph and solubility >>> dataset[0] ('Cc1nc(C)c(-c2ccc([C@H]3CC[C@H](Cc4nnn[nH]4)CC3)cc2)nc1C(N)=O', DGLGraph(num_nodes=29, num_edges=64, ndata_schemes={'h': Scheme(shape=(74,), dtype=torch.float32)} edata_schemes={}), tensor([12.5032])) We also provide information for the ChEMBL id and molecular weight of the compound. >>> dataset.chembl_ids[i] >>> dataset.mol_weight[i] We can also get the ChEMBL id and molecular weight along with SMILES, DGLGraph and solubility at once. >>> dataset.load_full = True >>> dataset[0] ('Cc1nc(C)c(-c2ccc([C@H]3CC[C@H](Cc4nnn[nH]4)CC3)cc2)nc1C(N)=O', DGLGraph(num_nodes=29, num_edges=64, ndata_schemes={'h': Scheme(shape=(74,), dtype=torch.float32)} edata_schemes={}), tensor([12.5032]), 'CHEMBL2178940', 391.48) """ def __init__(self, smiles_to_graph=smiles_to_bigraph, node_featurizer=None, edge_featurizer=None, load=False, log_every=1000, cache_file_path='./AstraZeneca_chembl_solubility_graph.bin', log_of_values=True, n_jobs=1): self._url = 'dataset/AstraZeneca_ChEMBL_Solubility.csv' data_path = get_download_dir() + '/AstraZeneca_ChEMBL_Solubility.csv' download(_get_dgl_url(self._url), path=data_path, overwrite=False) df = pd.read_csv(data_path) super(AstraZenecaChEMBLSolubility, self).__init__( df=df, smiles_to_graph=smiles_to_graph, node_featurizer=node_featurizer, edge_featurizer=edge_featurizer, smiles_column='Smiles', cache_file_path=cache_file_path, task_names=['Solubility'], load=load, log_every=log_every, init_mask=False, n_jobs=n_jobs) self.load_full = False # ChEMBL ids self.chembl_ids = df['Molecule ChEMBL ID'].tolist() self.chembl_ids = [self.chembl_ids[i] for i in self.valid_ids] # Molecular weight self.mol_weight = df['Molecular Weight'].tolist() self.mol_weight = [self.mol_weight[i] for i in self.valid_ids] if log_of_values: self.labels = self.labels.log()
[docs] def __getitem__(self, item): """Get datapoint with index Parameters ---------- item : int Datapoint index Returns ------- str SMILES for the ith datapoint DGLGraph DGLGraph for the ith datapoint Tensor of dtype float32 and shape (1) Labels of the ith datapoint str, optional ChEMBL id of the ith datapoint, returned only when ``self.load_full`` is True. float, optional Molecular weight of the ith datapoint, returned only when ``self.load_full`` is True. """ if self.load_full: return self.smiles[item], self.graphs[item], self.labels[item], \ self.chembl_ids[item], self.mol_weight[item] else: return self.smiles[item], self.graphs[item], self.labels[item]