Source code for dgllife.data.esol

# -*- coding: utf-8 -*-
#
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0
#
# ESOL from MoleculeNet for the prediction of water solubility

import pandas as pd

from dgl.data.utils import get_download_dir, download, _get_dgl_url, extract_archive

from .csv_dataset import MoleculeCSVDataset

__all__ = ['ESOL']

[docs]class ESOL(MoleculeCSVDataset): r"""ESOL from MoleculeNet for the prediction of water solubility Quoting [1], " ESOL is a small dataset consisting of water solubility data for 1128 compounds. The dataset has been used to train models that estimate solubility directly from chemical structures (as encoded in SMILES strings). Note that these structures don't include 3D coordinates, since solubility is a property of a molecule and not of its particular conformers." References: * [1] MoleculeNet: A Benchmark for Molecular Machine Learning. * [2] ESOL: estimating aqueous solubility directly from molecular structure. * [3] DeepChem Parameters ---------- smiles_to_graph: callable, str -> DGLGraph A function turning a SMILES string into a DGLGraph. If None, it uses :func:`dgllife.utils.SMILESToBigraph` by default. node_featurizer : callable, rdkit.Chem.rdchem.Mol -> dict Featurization for nodes like atoms in a molecule, which can be used to update ndata for a DGLGraph. Default to None. edge_featurizer : callable, rdkit.Chem.rdchem.Mol -> dict Featurization for edges like bonds in a molecule, which can be used to update edata for a DGLGraph. Default to None. load : bool Whether to load the previously pre-processed dataset or pre-process from scratch. ``load`` should be False when we want to try different graph construction and featurization methods and need to preprocess from scratch. Default to False. log_every : bool Print a message every time ``log_every`` molecules are processed. Default to 1000. cache_file_path : str Path to the cached DGLGraphs, default to 'esol_dglgraph.bin'. n_jobs : int The maximum number of concurrently running jobs for graph construction and featurization, using joblib backend. Default to 1. Examples -------- >>> from dgllife.data import ESOL >>> from dgllife.utils import SMILESToBigraph, CanonicalAtomFeaturizer >>> smiles_to_g = SMILESToBigraph(node_featurizer=CanonicalAtomFeaturizer()) >>> dataset = ESOL(smiles_to_g) >>> # Get size of the dataset >>> len(dataset) 1128 >>> # Get the 0th datapoint, consisting of SMILES, DGLGraph and solubility >>> dataset[0] ('OCC3OC(OCC2OC(OC(C#N)c1ccccc1)C(O)C(O)C2O)C(O)C(O)C3O ', DGLGraph(num_nodes=32, num_edges=68, ndata_schemes={} edata_schemes={}), tensor([-0.7700])) We also provide information for the name, estimated solubility, minimum atom degree, molecular weight, number of h bond donors, number of rings, number of rotatable bonds, and polar surface area of the compound >>> # Access the information mentioned above for the ith datapoint >>> dataset.compound_names[i] >>> dataset.estimated_solubility[i] >>> dataset.min_degree[i] >>> dataset.mol_weight[i] >>> dataset.num_h_bond_donors[i] >>> dataset.num_rings[i] >>> dataset.num_rotatable_bonds[i] >>> dataset.polar_surface_area[i] We can also get all these information along with SMILES, DGLGraph and solubility at once. >>> dataset.load_full = True >>> dataset[0] ('OCC3OC(OCC2OC(OC(C#N)c1ccccc1)C(O)C(O)C2O)C(O)C(O)C3O ', DGLGraph(num_nodes=32, num_edges=68, ndata_schemes={} edata_schemes={}), tensor([-0.7700]), 'Amigdalin', -0.974, 1, 457.43200000000013, 7, 3, 7, 202.32) """ def __init__(self, smiles_to_graph=None, node_featurizer=None, edge_featurizer=None, load=False, log_every=1000, cache_file_path='./esol_dglgraph.bin', n_jobs=1): self._url = 'dataset/ESOL.zip' data_path = get_download_dir() + '/ESOL.zip' dir_path = get_download_dir() + '/ESOL' download(_get_dgl_url(self._url), path=data_path, overwrite=False) extract_archive(data_path, dir_path) df = pd.read_csv(dir_path + '/delaney-processed.csv') super(ESOL, self).__init__(df=df, smiles_to_graph=smiles_to_graph, node_featurizer=node_featurizer, edge_featurizer=edge_featurizer, smiles_column='smiles', cache_file_path=cache_file_path, task_names=['measured log solubility in mols per litre'], load=load, log_every=log_every, init_mask=False, n_jobs=n_jobs) self.load_full = False # Compound names in PubChem self.compound_names = df['Compound ID'].tolist() self.compound_names = [self.compound_names[i] for i in self.valid_ids] # Estimated solubility self.estimated_solubility = df['ESOL predicted log solubility in mols per litre'].tolist() self.estimated_solubility = [self.estimated_solubility[i] for i in self.valid_ids] # Minimum atom degree self.min_degree = df['Minimum Degree'].tolist() self.min_degree = [self.min_degree[i] for i in self.valid_ids] # Molecular weight self.mol_weight = df['Molecular Weight'].tolist() self.mol_weight = [self.mol_weight[i] for i in self.valid_ids] # Number of H-Bond Donors self.num_h_bond_donors = df['Number of H-Bond Donors'].tolist() self.num_h_bond_donors = [self.num_h_bond_donors[i] for i in self.valid_ids] # Number of rings self.num_rings = df['Number of Rings'].tolist() self.num_rings = [self.num_rings[i] for i in self.valid_ids] # Number of rotatable bonds self.num_rotatable_bonds = df['Number of Rotatable Bonds'].tolist() self.num_rotatable_bonds = [self.num_rotatable_bonds[i] for i in self.valid_ids] # Polar Surface Area self.polar_surface_area = df['Polar Surface Area'].tolist() self.polar_surface_area = [self.polar_surface_area[i] for i in self.valid_ids]
[docs] def __getitem__(self, item): """Get datapoint with index Parameters ---------- item : int Datapoint index Returns ------- str SMILES for the ith datapoint DGLGraph DGLGraph for the ith datapoint Tensor of dtype float32 and shape (1) Labels of the ith datapoint str, optional Name for the ith compound, returned only when ``self.load_full`` is True. float, optional Estimated solubility for the ith compound, returned only when ``self.load_full`` is True. int, optional Minimum atom degree for the ith datapoint, returned only when ``self.load_full`` is True. float, optional Molecular weight for the ith datapoint, returned only when ``self.load_full`` is True. int, optional Number of h bond donors for the ith datapoint, returned only when ``self.load_full`` is True. int, optional Number of rings in the ith datapoint, returned only when ``self.load_full`` is True. int, optional Number of rotatable bonds in the ith datapoint, returned only when ``self.load_full`` is True. float, optional Polar surface area for the ith datapoint, returned only when ``self.load_full`` is True. """ if self.load_full: return self.smiles[item], self.graphs[item], self.labels[item], \ self.compound_names[item], self.estimated_solubility[item], \ self.min_degree[item], self.mol_weight[item], \ self.num_h_bond_donors[item], self.num_rings[item], \ self.num_rotatable_bonds[item], self.polar_surface_area[item] else: return self.smiles[item], self.graphs[item], self.labels[item]