Source code for dgllife.data.lipophilicity

# -*- coding: utf-8 -*-
#
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Lipophilicity from MoleculeNet for the prediction of octanol/water
# distribution coefficient (logD at pH 7.4) of 4200 compounds

import pandas as pd

from dgl.data.utils import get_download_dir, download, _get_dgl_url, extract_archive

from .csv_dataset import MoleculeCSVDataset

__all__ = ['Lipophilicity']

[docs]class Lipophilicity(MoleculeCSVDataset): r"""Lipophilicity from MoleculeNet for the prediction of octanol/water distribution coefficient (logD at pH 7.4) Quoting [1], "Lipophilicity is an important feature of drug molecules that affects both membrane permeability and solubility. This dataset, curated from ChEMBL database, provides experimental results of octanol/water distribution coefficient (logD at pH 7.4) of 4200 compounds." References: * [1] MoleculeNet: A Benchmark for Molecular Machine Learning. * [2] ChEMBL Deposited Data Set - AZ dataset; 2015. * [3] DeepChem Parameters ---------- smiles_to_graph: callable, str -> DGLGraph A function turning a SMILES string into a DGLGraph. If None, it uses :func:`dgllife.utils.SMILESToBigraph` by default. node_featurizer : callable, rdkit.Chem.rdchem.Mol -> dict Featurization for nodes like atoms in a molecule, which can be used to update ndata for a DGLGraph. Default to None. edge_featurizer : callable, rdkit.Chem.rdchem.Mol -> dict Featurization for edges like bonds in a molecule, which can be used to update edata for a DGLGraph. Default to None. load : bool Whether to load the previously pre-processed dataset or pre-process from scratch. ``load`` should be False when we want to try different graph construction and featurization methods and need to preprocess from scratch. Default to False. log_every : bool Print a message every time ``log_every`` molecules are processed. Default to 1000. cache_file_path : str Path to the cached DGLGraphs, default to 'lipophilicity_dglgraph.bin'. n_jobs : int The maximum number of concurrently running jobs for graph construction and featurization, using joblib backend. Default to 1. Examples -------- >>> from dgllife.data import Lipophilicity >>> from dgllife.utils import SMILESToBigraph, CanonicalAtomFeaturizer >>> smiles_to_g = SMILESToBigraph(node_featurizer=CanonicalAtomFeaturizer()) >>> dataset = Lipophilicity(smiles_to_g) >>> # Get size of the dataset >>> len(dataset) 4200 >>> # Get the 0th datapoint, consisting of SMILES, DGLGraph and logD >>> dataset[0] ('Cn1c(CN2CCN(CC2)c3ccc(Cl)cc3)nc4ccccc14', DGLGraph(num_nodes=24, num_edges=54, ndata_schemes={'h': Scheme(shape=(74,), dtype=torch.float32)} edata_schemes={}), tensor([3.5400])) We also provide information for the ChEMBL id of the compound. >>> dataset.chembl_ids[i] We can also get the ChEMBL id along with SMILES, DGLGraph and logD at once. >>> dataset.load_full = True >>> dataset[0] ('Cn1c(CN2CCN(CC2)c3ccc(Cl)cc3)nc4ccccc14', DGLGraph(num_nodes=24, num_edges=54, ndata_schemes={'h': Scheme(shape=(74,), dtype=torch.float32)} edata_schemes={}), tensor([3.5400]), 'CHEMBL596271') """ def __init__(self, smiles_to_graph=None, node_featurizer=None, edge_featurizer=None, load=False, log_every=1000, cache_file_path='./lipophilicity_dglgraph.bin', n_jobs=1): self._url = 'dataset/lipophilicity.zip' data_path = get_download_dir() + '/lipophilicity.zip' dir_path = get_download_dir() + '/lipophilicity' download(_get_dgl_url(self._url), path=data_path, overwrite=False) extract_archive(data_path, dir_path) df = pd.read_csv(dir_path + '/Lipophilicity.csv') super(Lipophilicity, self).__init__(df=df, smiles_to_graph=smiles_to_graph, node_featurizer=node_featurizer, edge_featurizer=edge_featurizer, smiles_column='smiles', cache_file_path=cache_file_path, task_names=['exp'], load=load, log_every=log_every, init_mask=False, n_jobs=n_jobs) self.load_full = False # ChEMBL ids self.chembl_ids = df['CMPD_CHEMBLID'].tolist() self.chembl_ids = [self.chembl_ids[i] for i in self.valid_ids]
[docs] def __getitem__(self, item): """Get datapoint with index Parameters ---------- item : int Datapoint index Returns ------- str SMILES for the ith datapoint DGLGraph DGLGraph for the ith datapoint Tensor of dtype float32 and shape (1) Labels of the ith datapoint str, optional ChEMBL id of the ith datapoint, returned only when ``self.load_full`` is True. """ if self.load_full: return self.smiles[item], self.graphs[item], self.labels[item], self.chembl_ids[item] else: return self.smiles[item], self.graphs[item], self.labels[item]