Source code for dgllife.model.model_zoo.mgcn_predictor

# -*- coding: utf-8 -*-
#
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0
#
# MGCN
# pylint: disable= no-member, arguments-differ, invalid-name

import torch.nn as nn

from ..gnn import MGCNGNN
from ..readout import MLPNodeReadout

__all__ = ['MGCNPredictor']

# pylint: disable=W0221
[docs]class MGCNPredictor(nn.Module): """MGCN for for regression and classification on graphs. MGCN is introduced in `Molecular Property Prediction: A Multilevel Quantum Interactions Modeling Perspective <https://arxiv.org/abs/1906.11081>`__. Parameters ---------- feats : int Size for the node and edge embeddings to learn. Default to 128. n_layers : int Number of gnn layers to use. Default to 3. classifier_hidden_feats : int (Deprecated, see ``predictor_hidden_feats``) Size for hidden representations in the classifier. Default to 64. n_tasks : int Number of tasks, which is also the output size. Default to 1. num_node_types : int Number of node types to embed. Default to 100. num_edge_types : int Number of edge types to embed. Default to 3000. cutoff : float Largest center in RBF expansion. Default to 5.0 gap : float Difference between two adjacent centers in RBF expansion. Default to 1.0 predictor_hidden_feats : int Size for hidden representations in the output MLP predictor. Default to 64. """ def __init__(self, feats=128, n_layers=3, classifier_hidden_feats=64, n_tasks=1, num_node_types=100, num_edge_types=3000, cutoff=5.0, gap=1.0, predictor_hidden_feats=64): super(MGCNPredictor, self).__init__() if predictor_hidden_feats == 64 and classifier_hidden_feats != 64: print('classifier_hidden_feats is deprecated and will be removed in the future, ' 'use predictor_hidden_feats instead') predictor_hidden_feats = classifier_hidden_feats self.gnn = MGCNGNN(feats=feats, n_layers=n_layers, num_node_types=num_node_types, num_edge_types=num_edge_types, cutoff=cutoff, gap=gap) self.readout = MLPNodeReadout(node_feats=(n_layers + 1) * feats, hidden_feats=predictor_hidden_feats, graph_feats=n_tasks, activation=nn.Softplus(beta=1, threshold=20))
[docs] def forward(self, g, node_types, edge_dists): """Graph-level regression/soft classification. Parameters ---------- g : DGLGraph DGLGraph for a batch of graphs. node_types : int64 tensor of shape (V) Node types to embed, V for the number of nodes. edge_dists : float32 tensor of shape (E, 1) Distances between end nodes of edges, E for the number of edges. Returns ------- float32 tensor of shape (G, n_tasks) Prediction for the graphs in the batch. G for the number of graphs. """ node_feats = self.gnn(g, node_types, edge_dists) return self.readout(g, node_feats)