dgllife.utils.PretrainAtomFeaturizer¶
-
class
dgllife.utils.
PretrainAtomFeaturizer
(atomic_number_types=None, chiral_types=None)[source]¶ AtomFeaturizer in Strategies for Pre-training Graph Neural Networks.
The atom featurization performed in Strategies for Pre-training Graph Neural Networks, which considers:
atomic number
chirality
We assume the resulting DGLGraph will not contain any virtual nodes.
- Parameters
atomic_number_types (list of int or None) – Atomic number types to consider for one-hot encoding. If None, we will use a default choice of 1-118.
chiral_types (list of Chem.rdchem.ChiralType or None) – Atom chirality to consider for one-hot encoding. If None, we will use a default choice, including
Chem.rdchem.ChiralType.CHI_UNSPECIFIED
,Chem.rdchem.ChiralType.CHI_TETRAHEDRAL_CW
,Chem.rdchem.ChiralType.CHI_TETRAHEDRAL_CCW
,Chem.rdchem.ChiralType.CHI_OTHER
.
Examples
>>> from rdkit import Chem >>> from dgllife.utils import PretrainAtomFeaturizer
>>> mol = Chem.MolFromSmiles('CCO') >>> atom_featurizer = PretrainAtomFeaturizer() >>> atom_featurizer(mol) {'atomic_number': tensor([5, 5, 7]), 'chirality_type': tensor([0, 0, 0])}
See also
BaseAtomFeaturizer
,CanonicalAtomFeaturizer
,WeaveAtomFeaturizer
,AttentiveFPAtomFeaturizer
,PAGTNAtomFeaturizer
-
__init__
(atomic_number_types=None, chiral_types=None)[source]¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__
([atomic_number_types, chiral_types])Initialize self.