dgllife.utils.PretrainBondFeaturizer¶
-
class
dgllife.utils.
PretrainBondFeaturizer
(bond_types=None, bond_direction_types=None, self_loop=True)[source]¶ BondFeaturizer in Strategies for Pre-training Graph Neural Networks.
The bond featurization performed in Strategies for Pre-training Graph Neural Networks, which considers:
bond type
bond direction
- Parameters
bond_types (list of Chem.rdchem.BondType or None) – Bond types to consider. Default to
Chem.rdchem.BondType.SINGLE
,Chem.rdchem.BondType.DOUBLE
,Chem.rdchem.BondType.TRIPLE
,Chem.rdchem.BondType.AROMATIC
.bond_direction_types (list of Chem.rdchem.BondDir or None) – Bond directions to consider. Default to
Chem.rdchem.BondDir.NONE
,Chem.rdchem.BondDir.ENDUPRIGHT
,Chem.rdchem.BondDir.ENDDOWNRIGHT
.self_loop (bool) – Whether self loops will be added. Default to True.
Examples
>>> from dgllife.utils import PretrainBondFeaturizer >>> from rdkit import Chem
>>> mol = Chem.MolFromSmiles('CO') >>> bond_featurizer = PretrainBondFeaturizer() >>> bond_featurizer(mol) {'bond_type': tensor([0, 0, 4, 4]), 'bond_direction_type': tensor([0, 0, 0, 0])}
-
__init__
(bond_types=None, bond_direction_types=None, self_loop=True)[source]¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__
([bond_types, bond_direction_types, …])Initialize self.