dgllife.utils.SMILESToBigraph¶
-
class
dgllife.utils.
SMILESToBigraph
(add_self_loop=False, node_featurizer=None, edge_featurizer=None, canonical_atom_order=True, explicit_hydrogens=False, num_virtual_nodes=0)[source]¶ Convert SMILES strings into bi-directed DGLGraphs and featurize for them.
- Parameters
add_self_loop (bool) – Whether to add self loops in DGLGraphs. Default to False.
node_featurizer (callable, rdkit.Chem.rdchem.Mol -> dict) – Featurization for nodes like atoms in a molecule, which can be used to update ndata for a DGLGraph. Default to None.
edge_featurizer (callable, rdkit.Chem.rdchem.Mol -> dict) – Featurization for edges like bonds in a molecule, which can be used to update edata for a DGLGraph. Default to None.
canonical_atom_order (bool) – Whether to use a canonical order of atoms returned by RDKit. Setting it to true might change the order of atoms in the graph constructed. Default to True.
explicit_hydrogens (bool) – Whether to explicitly represent hydrogens as nodes in the graph. If True, it will call rdkit.Chem.AddHs(mol). Default to False.
num_virtual_nodes (int) – The number of virtual nodes to add. The virtual nodes will be connected to all real nodes with virtual edges. If the returned graph has any node/edge feature, an additional column of binary values will be used for each feature to indicate the identity of virtual node/edges. The features of the virtual nodes/edges will be zero vectors except for the additional column. Default to 0.
Examples
>>> import torch >>> from rdkit import Chem >>> from dgllife.utils import SMILESToBigraph
>>> # A custom node featurizer >>> def featurize_atoms(mol): >>> feats = [] >>> for atom in mol.GetAtoms(): >>> feats.append(atom.GetAtomicNum()) >>> return {'atomic': torch.tensor(feats).reshape(-1, 1).float()}
>>> # A custom edge featurizer >>> def featurize_bonds(mol): >>> feats = [] >>> bond_types = [Chem.rdchem.BondType.SINGLE, Chem.rdchem.BondType.DOUBLE, >>> Chem.rdchem.BondType.TRIPLE, Chem.rdchem.BondType.AROMATIC] >>> for bond in mol.GetBonds(): >>> btype = bond_types.index(bond.GetBondType()) >>> # One bond between atom u and v corresponds to two edges (u, v) and (v, u) >>> feats.extend([btype, btype]) >>> return {'type': torch.tensor(feats).reshape(-1, 1).float()}
>>> smi_to_g = SMILESToBigraph(node_featurizer=featurize_atoms, ... edge_featurizer=featurize_bonds) >>> g = smi_to_g('CCO') >>> print(g.ndata['atomic']) tensor([[6.], [8.], [6.]]) >>> print(g.edata['type']) tensor([[0.], [0.], [0.], [0.]])
-
__init__
(add_self_loop=False, node_featurizer=None, edge_featurizer=None, canonical_atom_order=True, explicit_hydrogens=False, num_virtual_nodes=0)[source]¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__
([add_self_loop, node_featurizer, …])Initialize self.